Muin

Frae Wikipedia
Lowp tae: navigation, rake
Muin Muin seembol
FullMoon2010.jpg
Full muin as seen frae Yird's Northren Hemisphere
Designations
Adjectives
Orbital chairactereestics
Perigee 362600 km
(356400370400 km)
Apogee 405400 km
(404000406700 km)
384399 km  (0.00257 AU)[1]
Eccentricity 0.0549[1]
27.321661 d
(27 d 7 h 43 min 11.5 s[1])
29.530589 d
(29 d 12 h 44 min 2.9 s)
1.022 km/s
Inclination 5.145° tae the ecliptic[2][lower-alpha 1]
Regressin bi ane revolution in 18.61 years
Progressin bi ane revolution in 8.85 years
Satellite o Yird[lower-alpha 2][3]
Pheesical chairacteristics
Mean radius
1737.1 km  (0.273 o Yird's)[1][4][5]
Equatorial radius
1738.1 km  (0.273 o Yird's)[4]
Polar radius
1736.0 km  (0.273 o Yird's)[4]
Flettenin 0.0012[4]
Circumference 10921 km  (equatorial)
3.793×107 km2  (0.074 o Yird's)
Vollum 2.1958×1010 km3  (0.020 o Yird's)[4]
Mass 7.342×1022 kg  (0.012300 o Yird's)[1][4]
Mean density
3.344 g/cm3[1][4]
0.606 × Yird
1.62 m/s2  (0.1654 g)[4]
0.3929±0.0009[6]
2.38 km/s
27.321661 d  (synchronous)
Equatorial rotation velocity
4.627 m/s
Albedo 0.136[7]
Surface temp. min mean max
Equator 100 K 220 K 390 K
85°N  150 K 230 K[8]
29.3 tae 34.1 arcmeenits[4][lower-alpha 4]
Atmosphere[9]
Surface pressur
Composeetion bi vollum

The Muin is an astronomical bouk that orbits planet Yird, bein Yird's anerly permanent naitural satellite. It is the fift-lairgest naitural satellite in the Solar Seestem, an the lairgest amang planetar satellites relative tae the size o the planet that it orbits (its primar). Follaein Jupiter's satellite Io, the Muin is seicond-densest satellite amang thae whase densities are kent.

The Muin is thocht tae hae formed aboot 4.51 billion years ago, nae lang efter Yird. The maist widely acceptit explanation is that the Muin formed frae the debris left ower efter a giant impact atween Yird an a Maurs-sized bouk cried Theia.

The Muin is in synchronous rotation wi Yird, ayeweys shawin the same face, wi its near side merked bi daurk volcanic maria that fill the spaces atween the bricht auncient crustal hielands an the prominent impact craters. As seen frae the Yird, it is the seicont-brichtest regularly veesible celestial object in Yird's sky, efter the Sun. Its surface is actually daurk, awtho compared tae the nicht sky it appears verra bricht, wi a reflectance juist slichtly heicher nor that o worn asphalt. Its gravitational influence produces the ocean tides, bouk tides, an the slicht lenthenin o the day.

The Muin's current orbital distance is 384,400 km (238,900 mi),[10][11] or 1.28 licht-seiconts. This is aboot thirty times the diameter o Yird, wi its apparent size in the sky awmaist the same as that o the Sun, resultin in the Muin coverin the Sun nearly precisely in tot solar eclipse. This matchin o apparent veesual size will nae conteena in the faur futur, acause the Muin's distance frae Yird is slawly increasin.

The Soviet Union's Luna programme wis the first tae reach the Muin wi uncrewed spacecraft in 1959; the Unitit States' NASA Apollo program achieved the anerly crewed missions tae date, beginnin wi the first crewed lunar orbitin mission bi Apollo 8 in 1968, an sax crewed lunar laundins atween 1969 an 1972, wi the first bein Apollo 11. Thir missions returned lunar rocks that hae been uised tae develop a geological unnerstaundin o the Muin's oreegin, internal structur, an later history. Syne the Apollo 17 mission in 1972, the Muin haes been veesitit anerly bi uncrewed spacecraft.

Athin human cultur, baith the Muin's naitural prominence in the yirdly sky, an its regular cycle o phases as seen frae the Yird hae providit cultural references an influences for human societies an culturs syne time immemorial. Sic cultural influences can be foond in leid, lunar based calendar seestems, airt, an meethologie.

Pheesical chairactereestics[eedit | eedit soorce]

Internal structur[eedit | eedit soorce]

Structur o the Muin
Chemical composeetion o the lunar surface regolith (derived frae crustal rocks)[12]
Compoond Formula Composeetion (wt %)
Maria Hielands
seelicae SiO2 45.4% 45.5%
alumina Al2O3 14.9% 24.0%
lime CaO 11.8% 15.9%
airn(II) oxide FeO 14.1% 5.9%
magnesia MgO 9.2% 7.5%
titanium dioxide TiO2 3.9% 0.6%
sodium oxide Na2O 0.6% 0.6%
Tot 99.9% 100.0%

The Muin is a differentiatit bouk: it haes a geochemically distinct crust, mantle, an core. The Muin haes a solit airn-rich inner core wi a radius o 240 km (150 mi) an a fluid ooter core primarily made o liquid iron wi a radius o aboot 300 km (190 mi). Aroond the core is a pairtially mowten boondary layer wi a radius o aboot 500 km (310 mi).[13][14] This structur is thocht tae hae developed throu the fractional creestallisation o a global magma ocean shortly efter the Muin's formation 4.5 billion years ago.[15] Creestallisation o this magma ocean wad hae creautit a mafic mantle frae the precipitation an sinkin o the minerals olivine, clinopyroxene, an orthopyroxene; efter aboot three-quarters o the magma ocean haed creestallised, lawer-density plagioclase meenerals coud form an fleet intae a crust atap.[16] The feenal liquids tae crystallise wad hae been ineetially sandwiched atween the crust an mantle, wi a heich abundance o incompatible an heat-producin elements.[1] Conseestent wi this perspective, geochemical mappin made frae orbit suggests the crust o maistly anorthosite.[9] The Muin rock samples o the fluid lavas that erupted ontae the surface frae pairtial meltin in the mantle confirm the mafic mantle composeetion, that is mair airn rich nor that o Yird.[1] The crust is on average aboot 50 km (31 mi) thick.[1]

The Muin is the seicont-densest satellite in the Solar Seestem, efter Io.[17] Houiver, the inner core o the Muin is smaw, wi a radius o aboot 350 km (220 mi) or less,[1] aroond 20% o the radius o the Muin. Its composeetion is nae well defined, but is probably metallic airn alloyed wi a smaw amoont o sulfur an nickel; analyses o the Muin's time-variable rotation suggest that it is at least pairtly mowten.[18]

Surface geology[eedit | eedit soorce]

Topografie o the Moon meisurt frae the Lunar Orbiter Laser Altimeter on the mission Lunar Reconnaissance Orbiter, referenced tae a sphere o radius 1737.4 km
Topografie o the Muin

The topografie o the Muin haes been meisurt wi laser altimetry an stereo eemage analysis.[19] Its maist veesible topografic featur is the giant far-side Sooth Pole–Aitken basin, some 2,240 km (1,390 mi) in diameter, the lairgest crater on the Muin an the seicont-lairgest confirmed impact crater in the Solar Seestem.[20][21] At 13 km (8.1 mi) deep, its fluir is the lawest pynt on the surface o the Muin.[20][22] The heichest elevations o the Muin's surface are locatit directly tae the northeast, an it haes been suggestit micht hae been thickened bi the oblique formation impact o the Sooth Pole–Aitken basin.[23] Ither lairge impact basins, sic as Imbrium, Serenitatis, Crisium, Smythii, an Orientale, an aa possess regionally law elevations an elevatit rims.[20] The faur side o the lunar surface is on average aboot 1.9 km (1.2 mi) heicher nor that o the near side.[1]

The discovery o faut scarp cliffs bi the Lunar Reconnaissance Orbiter suggest that the Muin haes scrinkit athin the past billion years, bi aboot 90 metres (300 ft).[24] Seemilar scrinkage featurs exist on Mercur.

Volcanic featurs[eedit | eedit soorce]

The daurk an relatively featurless lunar plains, clearly seen wi the nakit ee, are cried maria (Latiin for "seas"; seengular mare), as thay war ance believed tae be filled wi watter;[25] thay are nou kent tae be vast solitifee'd puils o auncient basaltic lava. Awtho seemilar tae terrestrial basalts, lunar basalts hae mair airn an no minerals altered bi watter.[26][27] The majority o thir lavas eruptit or flawed intae the depressions associatit wi impact basins. Several geologic provinces conteenin shield volcanoes an volcanic domes are foond within the near side "maria".[28]

Awmaist aw maria are on the near side o the Muin, an cover 31% o the surface o the near side,[29] compared wi 2% o the faur side.[30] This is thocht tae be due tae a concentration o heat-producin elements unner the crust on the near side, seen on geochemical maps obteened bi Lunar Prospector's gamma-ray spectrometer, that wad hae caused the unnerleein mantle tae heat up, pairtially melt, rise tae the surface an erupt.[16][31][32] Maist o the Muin's mare basalts eruptit in the Imbrian period, 3.0–3.5 billion years aby, awtho some radiometrically datit samples are as auld as 4.2 billion years.[33] Till recently, the youngest eruptions, datit bi crater coontin, appeared tae hae been anly 1.2 billion years aby.[34] In 2006, a study o Ina, a tottie depression in Lacus Felicitatis, foond jagged, relatively dust-free featurs that, due tae the lack o erosion bi infawin debris, appeared tae be anly 2 million years auld.[35] Muinquakes an releases o gas an aa indicate some continued lunar acteevity.[35] In 2014 NASA annoonced "widespread evidence o young lunar volcanism" at 70 irregular mare patches identifee'd bi the Lunar Reconnaissance Orbiter, some less nor 50 million years auld. This raises the possibeelity o a muckle wairmer lunar mantle nor previously believed, at least on the near side whaur the deep crust is substantially waurmer due tae the greater concentration o radioactive elements.[36][37][38][39] Juist prior tae this, evidence haes been presentit for 2–10 million years younger basaltic volcanism inside Lowell crater,[40][41] Orientale basin, locatit in the transeetion zone atween the near an faur sides o the Muin. An ineetially hetter mantle and/or local enrichment o heat-producin elements in the mantle coud be responsible for prolanged acteevities an aa on the faur side in the Orientale basin.[42][43]

The lichter-coloured regions o the Muin are cried terrae, or mair commonly highlands, acause thay are heicher nor maist maria. Thay hae been radiometrically datit tae haein formed 4.4 billion years aby, an mey represent plagioclase cumulates o the lunar magma ocean.[33][34] In contrast tae Yird, na major lunar moontains are believed tae hae formed as a result o tectonic events.[44]

The concentration o maria on the Near Side likely reflects the substantially thicker crust o the helands o the Faur Side, that mey hae formed in a slaw-velocity impact o a seicont muin o Yird a few tens o millions o years efter thair formation.[45][46]

Impact craters[eedit | eedit soorce]

A gray, mony-ridged surface frae heich abuin. The lairgest featur is a circular rainged structur wi heich wawed sides an a lawer central peak: the entire surface oot tae the horizon is filled wi seemilar structurs that are smawer an owerlappin.
Lunar crater Daedalus on the Muin's faur side

The ither major geologic process that haes affectit the Muin's surface is impact craterin,[47] wi craters formed when asteroids an comets collide wi the lunar surface. Thare are estimatit tae be aboot 300,000 craters wider nor 1 km (0.6 mi) on the Muin's near side alane.[48] The lunar geologic timescale is based on the maist prominent impact events, includin Nectaris, Imbrium, an Orientale, structurs chairacterised bi multiple raings o upliftit material, atween hunders an thoosands o kilometres in diameter an associatit wi a braid apron o ejecta deposits that form a regional stratigraphic horizon.[49] The lack o an atmosphere, wather an recent geological processes mean that mony o thir craters are well-preserved. Awtho anly a few multi-raing basins hae been definitively datit, thay are uisefu for assignin relative ages. Acause impact craters accumulate at a nearly constant rate, coontin the nummer o craters per unit aurie can be uised tae estimate the age o the surface.[49] The radiometric ages o impact-meltit rocks collectit in the Apollo missions cluster atween 3.8 an 4.1 billion years auld: this haes been uised tae propone a Late Heavy Bombardment o impacts.[50]

Blanketit on tap o the Muin's crust is a heichly comminutit (breuken intae ever smawer particles) an impact gairdened surface layer cried regolith, formed bi impact processes. The finer regolith, the lunar sile o seelicon dioxide gless, haes a textur resemblin snaw an a scent resemblin spent gunpouder.[51] The regolith o aulder surfaces is generally thicker than for younger surfaces: it varies in thickness frae 10–20 km (6.2–12.4 mi) in the hielands an 3–5 km (1.9–3.1 mi) in the maria.[52] Beneath the finely comminuted regolith layer is the megaregolith, a layer o heichly fractured bedrock mony kilometres thick.[53]

Comparison o heich-resolution eemages obteened bi the Lunar Reconnaissance Orbiter haes shawn a contemporary crater-production rate signeeficantly heicher nor previously estimatit. A seicontar craterin process caused bi distal ejecta is thocht tae churn the tap twa centimetres o regolith a hunder times mair quickly nor previous models suggestit–on a timescale o 81,000 years.[54][55]

Lunar swirls at Reiner Gamma

Lunar swirls[eedit | eedit soorce]

Lunar swirls are enigmatic featurs foond across the Muin's surface, which are chairacterised bi a heich albedo, appearin optically immatur (i.e. the optical chairactereestics o a relatively young regolith), an eften displayin a sinuous shape. Thair curvilinear shape is eften accentuated bi law albedo regions that wind atween the bricht swirls.

Presence o watter[eedit | eedit soorce]

Liquid watter canna persist on the lunar surface. Whan exposed tae solar radiation, watter quickly decompones throu a process kent as photodissociation an is lost tae space. Houiver, syne the 1960s, scientists hae hypothesized that watter ice mey be depositit bi impactin comets or possibly produced bi the reaction o oxygen-rich lunar rocks, an hydrogen frae solar wind, leavin traces o watter that coud possibly survive in cauld, permanently shaidaed craters at aither pole on the Muin.[56][57] Computer simulations suggest that up tae 14,000 km2 (5,400 sq mi) o the surface mey be in permanent shaidae.[58] The presence o uisable quantities o watter on the Muin is an important factor in renderin lunar habitation as a cost-effective plan; the alternative o transportin watter frae Yird wad be prohibitively expensive.[59]

In years syne, seegnaturs o watter hae been foond tae exeest on the lunar surface.[60] In 1994, the bistatic radar experiment locatit on the Clementine spacecraft, indicatit the existence o smaw, frozen pockets o watter close tae the surface. Houiver, later radar observations bi Arecibo, suggest thir findings mey rather be rocks ejectit frae young impact craters.[61] In 1998, the neutron spectrometer on the Lunar Prospector spacecraft shawed that heich concentrations o hydrogen are present in the first meter o deepth in the regolith near the polar regions.[62] Volcanic lava beads, brocht back tae Yird abuird Apollo 15, shawed smaw amounts o watter in thair interior.[63]

The 2008 Chandrayaan-1 spacecraft haes syne confirmed the existence o surface watter ice, uisin the on-buird Moon Mineralogy Mapper. The spectrometer observed absorption lines common tae hydroxyl, in reflected sunlicht, providin evidence o lairge quantities o watter ice, on the lunar surface. The spacecraft shawed that concentrations mey possibly be as heich as 1,000 ppm.[64] In 2009, LCROSS sent a 2,300 kg (5,100 lb) impactor intae a permanently shaidaed polar crater, an detectit at least 100 kg (220 lb) o watter in a plume o ejectit material.[65][66] Anither examination o the LCROSS data shawed the amoont o detectit watter tae be closer tae 155 ± 12 kg (342 ± 26 lb).[67]

In Mey 2011, 615–1410 ppm watter in melt inclusions in lunar saumple 74220 wis reportit,[68] the famous heich-titanium "orange gless sile" o volcanic oreegin collectit during the Apollo 17 mission in 1972. The inclusions war formed in explosive eruptions on the Muin approximately 3.7 billion years aby. This concentration is comparable wi that o magma in Yird's upper mantle. Awtho o considerable selenological interest, this announcement affords little comfort tae wad-be lunar colonists—the sample oreeginatit mony kilometres ablo the surface, an the inclusions are sae difficult tae access that it teuk 39 years tae find them wi a state-o-the-airt ion microprobe instrument.

Gravitational field[eedit | eedit soorce]

The gravitational field o the Muin haes been meisurt throu trackin the Doppler shift o radio signals emittit bi orbitin spacecraft. The main lunar gravity featurs are mascons, lairge positive gravitational anomalies associatit wi some o the giant impact basins, partly caused bi the dense mare basaltic lava flaws that fill thae basins.[69][70] The anomalies greatly influence the orbit o spacecraft aboot the Muin. Thare are some puzzles: lava flaws bi themsels canna expleen aw o the gravitational signatur, an some mascons exist that are nae linked tae mare volcanism.[71]

Magnetic field[eedit | eedit soorce]

The Muin haes a freemit magnetic field o aboot 1–100 nanoteslas, less nor ane-hundert that o Yird. It daes nae currently hae a global dipolar magnetic field an anly haes crustal magnetisation, probably acquired early in lunar history whan a dynamo wis still operatin.[72][73] Alternatively, some o the remnant magnetization mey be frae transient magnetic fields generatit in lairge impact events throu the expansion o an impact-generatit plasma clood in the presence o an ambient magnetic field. This is supportit bi the apparent location o the lairgest crustal magnetisations near the antipodes o the giant impact basins.[74]

Atmosphere[eedit | eedit soorce]

Sketch bi the Apollo 17 astronauts. The lunar atmosphere wis later studied bi LADEE.[75][76]

The Muin haes an atmosphere sae tenuous as tae be nearly vacuum, wi a tot mass o less nor 10 metric tons (9.8 long tons; 11 short tons).[77] The surface pressur o this smaw mass is aroond 3 × 10−15 atm (0.3 nPa); it varies wi the lunar day. Its soorces include ootgassin an sputterin, a product o the bombardment o lunar sile bi solar wind ions.[9][78] Elements that hae been detectit include sodium an potassium, produced bi sputterin (an aa foond in the atmospheres o Mercur an Io); helium-4 an neon[79] frae the solar wind; an argon-40, radon-222, an polonium-210, ootgassed efter thair creaution bi radioactive decay within the crust an mantle.[80][81] The absence o sic neutral species (atoms or molecules) as oxygen, nitrogen, carbon, hydrogen an magnesium, that are present in the regolith, is nae unnerstuid.[80] Watter vapour haes been detectit bi Chandrayaan-1 an foond tae vary wi latitude, wi a maximum at ~60–70 degrees; it is possibly generatit frae the sublimation o watter ice in the regolith.[82] Thir gases either return intae the regolith due tae the Muin's gravity or are lost tae space, either throu solar radiation pressur or, if thay are ionized, bi bein swept awey bi the solar wind's magnetic field.[80]

Dist[eedit | eedit soorce]

A permanent asymmetric muin dist clood exists aroond the Muin, creautit bi smaw particles frae comets. Estimates are 5 tons o comet pairticles strike the Muin's surface ilk 24 oors. The pairticles strike the Muin's surface ejectin muin dist abuin the Muin. The dist stays abuin the Muin approximately 10 meenits, takkin 5 minutes tae rise, an 5 minutes tae faw. On average, 120 kilogrammes o dist are present abuin the Muin, rising tae 100 kilometers abuin the surface. The dist meisurments war made bi LADEE's Lunar Dust EXperiment (LDEX), atween 20 an 100 kilometres abuin the surface, in a sax-month period. LDEX detectit an average o ane 0.3 micrometer muin dist pairticle ilk meenit. Dist pairticle coonts peaked during the Geminid, Quadrantid, Northren Taurid, an Omicron Centaurid meteor shawers, whan the Yird, an Muin, pass throu comet debris. The clood is asymmetric, mair dense near the boondary atween the Muin's dayside an nichtside.[83][84]

Saisons[eedit | eedit soorce]

The Muin's axial tilt wi respect tae the ecliptic is anly 1.5424°,[85] muckle less nor the 23.44° o Yird. Acause o this, the Muin's solar illumination varies muckle less wi saison, an topografical details play a crucial role in saisonal effects.[86] Frae eemages taken bi Clementine in 1994, it appears that fower moontainous regions on the rim o Peary Crater at the Muin's north pole mey remeen illuminatit for the entire lunar day, creautin peaks o eternal licht. No sic regions exist at the sooth pole. Seemilarly, thare are places that remeen in permanent shaidae at the bottoms o mony polar craters,[58] an thir dark craters are extremely cauld: Lunar Reconnaissance Orbiter meisurt the lawest simmer temperaturs in craters at the soothren pole at 35 K (−238 °C; −397 °F)[87] an juist 26 K (−247 °C; −413 °F) close tae the winter solstice in north polar Hermite Crater. This is the cauldest temperatur in the Solar Seestem iver meosurt bi a spacecraft, caulder oven than the surface o Pluto.[86] Average temperaturs o the Muin's surface are reportit, but temperaturs o different auries will vary greatly dependin upon whether thay are in sunlicht or shaidae.[88]

Relationship tae Yird[eedit | eedit soorce]

Orbit[eedit | eedit soorce]

Yird haes a pronoonced axial tilt; the Muin's orbit is nae perpendicular tae Yird's axis, but lees close tae Yird's orbital plane.
Yird–Muin seestem (schematic)
DSCOVR satellite sees the Muin passin in front o Yird

The Muin maks a complete orbit aroond Yird wi respect tae the fixed starns aboot ance ivery 27.3 days[lower-alpha 6] (its sidereal period). Houiver, acause Yird is muivin in its orbit aroond the Sun at the same time, it takes slichtly langer for the Muin tae shaw the same phase tae Yird, which is aboot 29.5 days[lower-alpha 7] (its synodic period).[29] Unlik maist satellites o ither planets, the Muin orbits closer tae the ecliptic plane nor tae the planet's equatorial plane. The Muin's orbit is subtly perturbed bi the Sun an Yird in mony smaw, complex an interactin weys. For ensaumple, the plane o the Muin's orbit gradually rotates ance ivery 18.61[89] years, that affects ither aspects o lunar motion. Thir follae-on effects are mathematically describit bi Cassini's laws.[90]

Relative size[eedit | eedit soorce]

The Muin is exceptionally lairge relative tae Yird: a quarter its diameter an 1/81 its mass.[29] It is the lairgest muin in the Solar Seestem relative tae the size o its planet,[lower-alpha 8] tho Charon is lairger relative tae the dwarf planet Pluto, at 1/9 Pluto's mass.[lower-alpha 9][91] Yird an the Muin are nivertheless still conseederit a planet–satellite seestem, raither nor a dooble planet, acause thair barycentre, the common centre o mass, is locatit 1,700 km (1,100 mi) (aboot a quarter o Yird's radius) aneath Yird's surface.[92]

Appearance frae Yird[eedit | eedit soorce]

Muin settin in wastren sky ower the High Desert in Californie

The Muin is in synchronous rotation: it rotates aboot its axis in aboot the same time it takes tae orbit Yird. This results in it ayeweys keepin nearly the same face turned taewart Yird. Houiver, due tae the effect o libration, aboot 59% o the Muin's surface can actually be seen frae Yird.

The Muin uised tae rotate at a fester rate, but early in its history, its rotation slawed an becam tidally locked in this orientation as a result o freectional effects associatit wi tidal deformations caused bi Yird.[93] Wi time, the energy o rotation o the Muin on its axis wis dissipatit as heat, till thare wis no rotation o the Muin relative tae the Yird. The side o the Muin that faces Yird is cried the near side, an the opposite the faur side. The far side is eften inaccurately cried the "daurk side", but it is in fact illuminatit as eften as the near side: ance per lunar day, in the new muin phase we observe on Yird when the near side is daurk.[94] In 2016, planetary scientists, uisin data collectit on the muckle earlier Nasa Lunar Prospector mission, foond twa hydrogen-rich auries on opposite sides o the Muin, probably in the form o watter ice. It is speculatit that thir patches war the poles o the Muin billions o years aby, afore it wis tidally locked tae Yird.[95]

The Muin haes an exceptionally law albedo, giein it a reflectance that is slichtly brichter nor that o worn asphalt. Despite this, it is the brichtest object in the sky efter the Sun.[29][lower-alpha 10] This is pairtly due tae the brichtness enhancement o the opposeetion effect; at quarter phase, the Muin is anly ane-tent as bricht, raither nor hauf as bricht, as at full muin.[96]

Addeetionally, colour constancy in the visual seestem recalibrates the relations atween the colours o an object an its surroondins, an acause the surroondin sky is comparatively daurk, the sunlit Muin is perceived as a bricht object. The edges o the full muin seem as bricht as the centre, wi no limm daurkenin, due tae the reflective properties o lunar sile, that reflects mair licht back taewart the Sun nor in ither directions. The Muin daes appear lairger whan close tae the horizon, but this is a purely psychological effect, kent as the Muin illusion, first descrived in the 7t century BC.[97] The full muin subtends an arc o aboot 0.52° (on average) in the sky, aboot the same apparent size as the Sun (see § Eclipses).

The heichest altitude o the Muin in the sky varies wi the lunar phase an the saison o the year. The full muin is heichest in winter. The 18.61-year nodes cycle an aa haes an influence: whan the ascendin node o the lunar orbit is in the vernal equinox, the lunar declination can gae as far as 28° ilk month. This means the Muin can go owerheid at latitudes up tae 28° frae the equator, instead o anerly 18°. The orientation o the Muin's crescent an aa depends on the latitude o the observation steid: close tae the equator, an observer can see a smile-shaped crescent muin.[98]

The Muin is veesible for twa weeks ivery 27.3 days at the North an Sooth Pole. The Muin's licht is uised bi zooplankton in the Arctic whan the sun is ablo the horizon for months on end.[99]

The 14 November 2016 supermuin wis 356,511 kilometres (221,526 mi) awey[100] frae the centre of Earth, the closest occurrence syne 26 Januar 1948. It will nae be closer until 25 November 2034.[101]

The distance atween the Muin an Yird varies frae aroond 356,400 km (221,500 mi) tae 406,700 km (252,700 mi) at perigees (closest) an apogees (faurthest), respectively. On 14 November 2016, it wis closer tae Yird when at full phase than it haes been syne 1948, 14% closer than its faurthest poseetion in apogee.[102] Reportit as a "super muin", this closest pynt coincides within an oor o a full muin, an it wis 30% mair luminous than when at its greatest distance due tae its angular diameter bein 14% greater, acause .[103][104][105] At lower levels, the human perception o reduced brightness as a percentage is providit bi the follaein formula:[106][107]

Whan the actual reduction is 1.00 / 1.30, or about 0.770, the perceived reduction is aboot 0.877, or 1.00 / 1.14. This gies a maximum perceived increase o 14% atween apogee an perigee muins o the same phase.[108]

Thare haes been historical controversy ower whether featurs on the Muin's surface chynge ower time. The day, mony o thir claims are thocht tae be illusory, resultin frae observation unner different lichtin condeetions, puir astronomical seein, or inadequate drawins. Houiver, ootgassin daes occasionally occur, an coud be responsible for a minor percentage o the reportit lunar transient phenomena. Recently, it haes been suggestit that aboot a 3 km (1.9 mi) diameter region o the lunar surface wis modified bi a gas release event aboot a million years aby.[109][110] The Muin's appearance, lik that o the Sun, can be affectit bi Yird's atmosphere: common effects are a 22° halo ring formed when the Muin's licht is refractit throu the ice creestals o heich cirrostratus cloud, an smawer coronal rings whan the Muin is seen throu thin cloods.[111]

The monthly cheenges o angle between the direction o illumination bi the Sun an viewin frae Yird, an the phases o the Muin that result as viewed frae the northren hemisphere. Yird–Muin distance is nae tae scale.

The illuminatit aurie o the veesible sphere (degree o illumination) is gien bi , whaur is the elongation (i.e., the angle atween Muin, the observer (on Yird) an the Sun).

Tidal effects[eedit | eedit soorce]

Main article: Tide
Ower ane lunar month mair nor hauf o the Muin's surface can be seen frae Yird's surface.
The libration o the Muin ower a single lunar month. An aa veesible is the slicht variation in the Muin's veesual size frae Yird.

The gravitational attraction that masses hae for ane anither decreases inversely wi the square o the distance o thae masses frae ilk ither. As a result, the slichtly greater attraction that the Muin haes for the side o Yird closest tae the Muin, as compared tae the pairt o the Yird opposite the Muin, results in tidal forces. Tidal forces affect baith the Yird's crust an oceans.

The maist obvious effect o tidal forces is tae cause twa bulges in the Yird's oceans, ane on the side facin the Muin an the ither on the side opposite. This results in elevatit sea levels cried ocean tides.[112] As the Yird spins on its axis, ane o the ocean bulges (heich tide) is held in place "unner" the Muin, while anither sic tide is opposite. As a result, thare are twa heich tides, an twa law tides in aboot 24 oors.[112] Syne the Muin is orbitin the Yird in the same direction o the Yird's rotation, the heich tides occur aboot ivery 12 oors an 25 minutes; the 25 minutes is due tae the Muin's time tae orbit the Yird. The Sun haes the same tidal effect on the Yird, but its forces o attraction are anerly 40% that o the Muin's; the Sun's an Muin's interplay is responsible for ware an neap tides.[112] If the Yird war a watter warld (ane wi no continents) it wad produce a tide o anly ane meter, an that tide wad be verra predictable, but the ocean tides are greatly modified bi ither effects: the freectional cooplin o watter tae Yird's rotation throu the ocean fluirs, the inertia o watter's muivement, ocean basins that graw shallaer near laund, the sloshin o watter atween different ocean basins.[113] As a result, the timing o the tides at maist pynts on the Yird is a product o observations that are explained, incidentally, bi theory.

While gravitation causes acceleration an movement o the Yird's fluid oceans, gravitational cooplin atween the Muin an Yird's solit bouk is maistly elastic an plastic. The result is a forder tidal effect o the Muin on the Yird that causes a bulge o the solit portion o the Yird nearest the Muin that acts as a torque in opposeetion tae the Yird's rotation. This "drains" angular momentum an rotational kinetic energy frae Yird's spin, slowing the Yird's rotation.[112][114] That angular momentum, lost frae the Yird, is transferred tae the Muin in a process (confusingly kent as tidal acceleration), that lifts the Muin intae a heicher orbit an results in its lawer orbital speed aboot the Yird. Thus the distance atween Yird an Muin is increasin, an the Yird's spin is slawin in reaction.[114] Measurements frae laser reflectors left in the Apollo missions (lunar rangin experiments) hae foond that the Muin's distance increases bi 38 mm (1.5 in) per year[115] (aboot the rate at that human fingernails growe).[116] Atomic clocks an aa shaw that Yird's day lenthens bi aboot 15 microseiconts ivery year,[117] slawly increasin the rate at that UTC is adjuistit bi leap seiconts. Left tae run its coorse, this tidal drag wad continue till the spin o Yird an the orbital period o the Muin matched, creautin mutual tidal lockin atween the twa. As a result, the Muin wad be suspendit in the sky ower ane meridian, as is awreidy currently the case wi Pluto an its muin Charon. Houiver, the Sun will acome a reid giant engulfin the Yird-Muin seestem lang afore this occurrence.[118][119]

In a lik manner, the lunar surface experiences tides o aroond 10 cm (4 in) amplitude ower 27 days, wi twa components: a fixed ane due tae Yird, acause thay are in synchronous rotation, an a varyin component frae the Sun.[114] The Yird-induced component arises frae libration, a result o the Muin's orbital eccentricity (if the Muin's orbit war perfectly circular, thare wad anerly be solar tides).[114] Libration an aa cheenges the angle frae that the Muin is seen, allouin a tot o aboot 59% o its surface tae be seen frae Yird ower time.[29] The cumulative effects o stress biggit up bi thir tidal forces produces muinquauks. Muinquakes are muckle less common an waiker nor are yirdquauks, awtho muin quauks can last for up tae an oor—a signeeficantly langer time than terrestrial quauks—acause o the absence o watter tae damp oot the seismic vibrations. The existence o muinquauks wis an unexpectit discovery frae seismometers placed on the Muin bi Apollo astronauts frae 1969 throu 1972.[120]

Eclipses[eedit | eedit soorce]

Main articles: Solar eclipse and Lunar eclipse
The fiercely bright disk o the Sun is completely obscured bi the exact fit o the disk o the daurk, non-illuminatit Moon, leavin anerly the radial, fuzzy, glawin coronal filaments o the Sun aroond the edge.
The bricht disk o the Sun, shawin mony coronal filaments, flares an grainy patches in the wavelenth o this eemage, is pairtly obscured bi a smaw dark disk: here, the Muin covers less than a fifteent o the Sun.
Frae Yird, the Muin an the Sun appear the same size, as seen in the 1999 solar eclipse (left), whauras frae the STEREO-B spacecraft in an Yird-trailin orbit, the Muin appears mukle smawer than the Sun (richt).[121]

Eclipses can anerly occur when the Sun, Yird, an Muin are aw in a straucht line (termed "syzygy"). Solar eclipses occur at new muin, whan the Muin is atween the Sun an Yird. In contrast, lunar eclipses occur at full muin, whan Yird is atween the Sun an Muin. The apparent size o the Muin is aboot the same as that o the Sun, wi baith bein viewed at close tae ane-hauf a degree wide. The Sun is muckle lairger nor the Muin but it is the precise vastly greater distance that gies it the same apparent size as the muckle closer an much smawer Muin frae the perspective o Yird. The variations in apparent size, due tae the non-circular orbits, are nearly the same as well, tho occurrin in different cycles. This maks possible baith total (wi the Muin appearin lairger than the Sun) an annular (wi the Muin appearin smawer than the Sun) solar eclipses.[122] In a tot eclipse, the Muin completely covers the disc o the Sun an the solar corona acomes vrrsible tae the nakit ee. Acause the distance atween the Muin an Yird is verra slawly increasin ower time,[112] the angular diameter o the Muin is decreasin. An aa, as it evolves toward acomin a reid giant, the size o the Sun, an its apparent diameter in the sky, are slawly increasin.[lower-alpha 11] The combination o thir twa cheenges means that hunders o millions o years ago, the Muin wad alyeweys completely cover the Sun on solar eclipses, an no annular eclipses war possible. Likwise, hunders o millions o years in the futur, the Muin will no langer cover the Sun completely, an tot solar eclipses will nae occur.[123]

Acause the Muin's orbit aroond Yird is inclined bi aboot 5.145° (5° 9') tae the orbit o Yird aroond the Sun, eclipses dae nae occur at ivery full an new muin. For an eclipse tae occur, the Muin must be near the intersection o the twa orbital planes.[124] The periodicity an recurrence o eclipses o the Sun bi the Muin, an o the Muin bi Yird, is describit bi the saros, that haes a period o approximately 18 years.[125]

Acause the Muin is continuously blockin oor view o a hauf-degree-wide circular aurie o the sky,[lower-alpha 12][126] the relatit phenomenon o occultation occurs whan a bricht starn or planet passes ahint the Muin an is occultit: hidden frae view. In this way, a solar eclipse is an occultation o the Sun. Because the Muin is comparatively close tae Yird, occultations o individual starns are nae veesible iverywhaur on the planet, nor at the same time. Acause o the precession o the lunar orbit, ilk year different stars are occulted.[127]

References[eedit | eedit soorce]

Notes[eedit | eedit soorce]

  1. Atween 18.29° an 28.58° tae Yird's equator.[1]
  2. Thare are a nummer o near-Yird asteroids, includin 3753 Cruithne, that are co-orbital wi Yird: thair orbits bring them close tae Yird for periods o time but then alter in the lang term (Morais et al, 2002). Thir are quasi-satellites – thay are not muins as thay dae nae orbit Yird. For mair information, see Ither muins o Yird.
  3. The maximum vailyie is gien based on scalin o the brichtness frae the vailyie o −12.74 gien for an equator tae Muin-centre distance o 378 000 km in the NASA factsheet reference tae the meenimum Yird–Muin distance gien thare, efter the latter is correctit for Yird's equatorial radius o 6 378 km, giein 350 600 km. The meenimum vailyie (for a distant new muin) is based on a seemilar scalin uisin the maximum Yird–Muin distance o 407 000 km (gien in the factsheet) an bi calculatin the brichtness o the yirdshine ontae sic a new muin. The brichtness o the yirdshine is [ Yird albedo × (Yird radius / Radius o Muin's orbit)2 ] relative tae the direct solar illumination that occurs for a full muin. (Earth albedo = 0.367; Yird radius = (polar radius × equatorial radius)½ = 6 367 km.)
  4. The range o angular size vailyies gien are based on semple scalin o the follaein vailyies gien in the fact sheet reference: at an Yird-equator tae Muin-centre distance o 378 000 km, the angular size is 1896 arcseiconts. The same fact sheet gies extreme Yird–Muin distances o 407 000 km an 357 000 km. For the maximum angular size, the meenimum distance haes ae be correctit for Yird's equatorial radius o 6 378 km, giein 350 600 km.
  5. Lucey et al. (2006) gie 107 particles cm−3 bi day an 105 pairticles cm−3 bi nicht. Alang wi equatorial surface temperaturs o 390 K bi day an 100 K bi nicht, the ideal gas law yields the pressurs gien in the infobox (roondit tae the nearest order o magnitude): 10−7 Pa bi day an 10−10 Pa bi nicht.
  6. Mair accurately, the Muin's mean sidereal period (fixed starn tae fixed starn) is 27.321661 days (27 d 07 o 43 meen 11.5 s), an its mean tropical orbital period (frae equinox tae equinox) is 27.321582 days (27 d 07 o 43 meen 04.7 s) (Explanatory Supplement to the Astronomical Ephemeris, 1961, at p.107).
  7. Mair accurately, the Muin's mean synodic period (atween mean solar conjunctions) is 29.530589 days (29 d 12 h 44 min 02.9 s) (Explanatory Supplement to the Astronomical Ephemeris, 1961, at p.107).
  8. Thare is no strang correlation atween the sizes o planets an the sizes o thair satellites. Lairger planets tend tae hae mair satellites, baith lairge an smaw, than smawer planets.
  9. Wi 27% the diameter an 60% the density o Yird, the Muin haes 1.23% o the mass o Yird. The muin Charon is lairger relative tae its primar Pluto, but Pluto is nou conseedert tae be a dwarf planet.
  10. The Sun's apparent magnitude is −26.7, while the full muin's apparent magnitude is −12.7.
  11. See graph in Sun#Life phases. At present, the diameter o the Sun is increasin at a rate o aboot five percent per billion years. This is verra seemilar tae the rate at that the apparent angular diameter o the Muin is decreasin as it recedes frae Yird.
  12. On average, the Muin covers an aurie o 0.21078 square degrees on the nicht sky.

Citations[eedit | eedit soorce]

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 Wieczorek, Mark A.; et al. (2006). "The constitution and structure of the lunar interior". Reviews in Mineralogy and Geochemistry. 60 (1): 221–364. doi:10.2138/rmg.2006.60.3. 
  2. 2.0 2.1 Lang, Kenneth R. (2011), The Cambridge Guide to the Solar System Archived 1 January 2016 at the Wayback Machine., 2nd ed., Cambridge University Press.
  3. Morais, M.H.M.; Morbidelli, A. (2002). "The Population of Near-Earth Asteroids in Coorbital Motion with the Earth". Icarus. 160 (1): 1–9. Bibcode:2002Icar..160....1M. doi:10.1006/icar.2002.6937. 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Williams, Dr. David R. (2 Februar 2006). "Moon Fact Sheet". NASA/National Space Science Data Center. Archived frae the oreeginal on 23 Mairch 2010. Retrieved 31 December 2008. 
  5. Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Lemoine, Frank G. (1 Januar 1997). "Topography of the Moon from the Clementine lidar". Journal of Geophysical Research. 102 (E1): 1601. Bibcode:1997JGR...102.1591S. doi:10.1029/96JE02940. 
  6. Williams, James G.; Newhall, XX; Dickey, Jean O. (1996). "Lunar moments, tides, orientation, and coordinate frames". Planetary and Space Science. 44 (10): 1077–1080. Bibcode:1996P&SS...44.1077W. doi:10.1016/0032-0633(95)00154-9. 
  7. Matthews, Grant (2008). "Celestial body irradiance determination from an underfilled satellite radiometer: application to albedo and thermal emission measurements of the Moon using CERES". Applied Optics. 47 (27): 4981–93. Bibcode:2008ApOpt..47.4981M. PMID 18806861. doi:10.1364/AO.47.004981. 
  8. A.R. Vasavada; D.A. Paige & S.E. Wood (1999). "Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits". Icarus. 141 (2): 179–193. Bibcode:1999Icar..141..179V. doi:10.1006/icar.1999.6175. 
  9. 9.0 9.1 9.2 Lucey, Paul; Korotev, Randy L.; et al. (2006). "Understanding the lunar surface and space-Moon interactions". Reviews in Mineralogy and Geochemistry. 60 (1): 83–219. doi:10.2138/rmg.2006.60.2. 
  10. "How far away is the moon? :: NASA Space Place". Archived frae the oreeginal on 6 October 2016. 
  11. Scott, Elaine. Our Moon: New Discoveries About Earth's Closest Companion. Houghton Mifflin Harcourt (2016) ISBN 9780544750586. page 7.
  12. Taylor, Stuart Ross (1975). Lunar science: A post-Apollo view. Pergamon Press. p. 64. 
  13. Brown, D.; Anderson, J. (6 Januar 2011). "NASA Research Team Reveals Moon Has Earth-Like Core". NASA. NASA. Archived frae the oreeginal on 15 Mairch 2012. 
  14. Weber, R. C.; Lin, P.-Y.; Garnero, E. J.; Williams, Q.; Lognonne, P. (21 Januar 2011). "Seismic Detection of the Lunar Core" (PDF). Science. 331 (6015): 309–312. PMID 21212323. doi:10.1126/science.1199375. Archived (PDF) frae the oreeginal on 15 October 2015. 
  15. Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C. (2009). "Timing of crystallization of the lunar magma ocean constrained by the oldest zircon". Nature Geoscience. 2 (2): 133–136. Bibcode:2009NatGe...2..133N. doi:10.1038/ngeo417. 
  16. 16.0 16.1 Shearer, Charles K.; et al. (2006). "Thermal and magmatic evolution of the Moon". Reviews in Mineralogy and Geochemistry. 60 (1): 365–518. doi:10.2138/rmg.2006.60.4. 
  17. Schubert, J. (2004). "Interior composition, structure, and dynamics of the Galilean satellites.". In F. Bagenal; et al. Jupiter: The Planet, Satellites, and Magnetosphere. Cambridge University Press. pp. 281–306. ISBN 978-0-521-81808-7. 
  18. Williams, J. G.; Turyshev, S. G.; Boggs, D. H.; Ratcliff, J. T. (2006). "Lunar laser ranging science: Gravitational physics and lunar interior and geodesy". Advances in Space Research. 37 (1): 67–71. Bibcode:2006AdSpR..37...67W. arXiv:gr-qc/0412049. doi:10.1016/j.asr.2005.05.013. 
  19. Spudis, Paul D.; Cook, A.; Robinson, M.; Bussey, B.; Fessler, B. (Januar 1998). "Topography of the South Polar Region from Clementine Stereo Imaging". Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets: 69. Bibcode:1998nvmi.conf...69S. 
  20. 20.0 20.1 20.2 Spudis, Paul D.; Reisse, Robert A.; Gillis, Jeffrey J. (1994). "Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry". Science. 266 (5192): 1848–1851. Bibcode:1994Sci...266.1848S. PMID 17737079. doi:10.1126/science.266.5192.1848. 
  21. Pieters, C.M.; Tompkins, S.; Head, J.W.; Hess, P.C. (1997). "Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle". Geophysical Research Letters. 24 (15): 1903–1906. Bibcode:1997GeoRL..24.1903P. doi:10.1029/97GL01718. 
  22. Taylor, G.J. (17 Julie 1998). "The Biggest Hole in the Solar System". Planetary Science Research Discoveries. Hawai'i Institute of Geophysics and Planetology. Archived frae the oreeginal on 20 August 2007. Retrieved 12 Aprile 2007. 
  23. Schultz, P. H. (Mairch 1997). "Forming the south-pole Aitken basin – The extreme games". Conference Paper, 28th Annual Lunar and Planetary Science Conference. 28: 1259. Bibcode:1997LPI....28.1259S. 
  24. "NASA's LRO Reveals 'Incredible Shrinking Moon'". NASA. 19 August 2010. Archived frae the oreeginal on 21 August 2010. 
  25. Wlasuk, Peter (2000). Observing the Moon. Springer. p. 19. ISBN 978-1-85233-193-1. 
  26. Norman, M. (21 Aprile 2004). "The Oldest Moon Rocks". Planetary Science Research Discoveries. Hawai'i Institute of Geophysics and Planetology. Archived frae the oreeginal on 18 Aprile 2007. Retrieved 12 Aprile 2007. 
  27. Varricchio, L. (2006). Inconstant Moon. Xlibris Books. ISBN 978-1-59926-393-9. 
  28. Head, L.W.J.W. (2003). "Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement". Journal of Geophysical Research. 108 (E2): 5012. Bibcode:2003JGRE..108.5012W. doi:10.1029/2002JE001909. Archived frae the oreeginal on 12 Mairch 2007. Retrieved 12 Aprile 2007. 
  29. 29.0 29.1 29.2 29.3 29.4 Spudis, P.D. (2004). "Moon". World Book Online Reference Center, NASA. Archived frae the original on 3 Julie 2013. Retrieved 12 Aprile 2007. 
  30. Gillis, J.J.; Spudis, P.D. (1996). "The Composition and Geologic Setting of Lunar Far Side Maria". Lunar and Planetary Science. 27: 413. Bibcode:1996LPI....27..413G. 
  31. Lawrence, D. J., et al. (11 August 1998). "Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer". Science. 281 (5382): 1484–1489. Bibcode:1998Sci...281.1484L. PMID 9727970. doi:10.1126/science.281.5382.1484. Archived frae the oreeginal on 16 Mey 2009. Retrieved 29 August 2009. 
  32. Taylor, G.J. (31 August 2000). "A New Moon for the Twenty-First Century". Planetary Science Research Discoveries. Hawai'i Institute of Geophysics and Planetology. Archived frae the oreeginal on 15 Mairch 2012. Retrieved 12 Aprile 2007. 
  33. 33.0 33.1 Papike, J.; Ryder, G.; Shearer, C. (1998). "Lunar Samples". Reviews in Mineralogy and Geochemistry. 36: 5.1–5.234. 
  34. 34.0 34.1 Hiesinger, H.; Head, J.W.; Wolf, U.; Jaumanm, R.; Neukum, G. (2003). "Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Numbium, Mare Cognitum, and Mare Insularum". Journal of Geophysical Research. 108 (E7): 1029. Bibcode:2003JGRE..108.5065H. doi:10.1029/2002JE001985. 
  35. 35.0 35.1 Phil Berardelli (9 November 2006). "Long Live the Moon!". Science. Archived frae the oreeginal on 18 October 2014. 
  36. Jason Major (14 October 2014). "Volcanoes Erupted 'Recently' on the Moon". Discovery News. Archived frae the oreeginal on 16 October 2014. 
  37. "NASA Mission Finds Widespread Evidence of Young Lunar Volcanism". NASA. 12 October 2014. Archived frae the oreeginal on 3 Januar 2015. 
  38. Eric Hand (12 October 2014). "Recent volcanic eruptions on the moon". Science. Archived frae the oreeginal on 14 October 2014. 
  39. Braden, S. E.; Stopar, J. D.; Robinson, M. S.; Lawrence, S. J.; van der Bogert, C. H.; Hiesinger, H.doi=10.1038/ngeo2252. "Evidence for basaltic volcanism on the Moon within the past 100 million years". Nature Geoscience. 7: 787–791. Bibcode:2014NatGe...7..787B. doi:10.1038/ngeo2252. 
  40. Srivastava, N.; Gupta, R.P. (2013). "Young viscous flows in the Lowell crater of Orientale basin, Moon: Impact melts or volcanic eruptions?". Planetary and Space Science. 87: 37–45. Bibcode:2013P&SS...87...37S. doi:10.1016/j.pss.2013.09.001. 
  41. Gupta, R.P.; Srivastava, N.; Tiwari, R.K. (2014). "Evidences of relatively new volcanic flows on the Moon". Current Science. 107 (3): 454–460. 
  42. Whitten, J.; et al. (2011). "Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1". Journal of Geophysical Research. 116: E00G09. Bibcode:2011JGRE..116.0G09W. doi:10.1029/2010JE003736. 
  43. Cho, Y.; et al. (2012). "Young mare volcanism in the Orientale region contemporary with the Procellarum KREEP Terrane (PKT) volcanism peak period 2 b. y. ago". Geophysical Research Letters. 39: L11203. 
  44. Munsell, K. (4 December 2006). "Majestic Mountains". Solar System Exploration. NASA. Archived frae the original on 17 September 2008. Retrieved 12 Aprile 2007. 
  45. Richard Lovett. "Early Earth may have had two moons : Nature News". Nature. Archived frae the oreeginal on 3 November 2012. Retrieved 1 November 2012. 
  46. "Was our two-faced moon in a small collision?". Theconversation.edu.au. Archived frae the oreeginal on 30 Januar 2013. Retrieved 1 November 2012. 
  47. Melosh, H. J. (1989). Impact cratering: A geologic process. Oxford University Press. ISBN 978-0-19-504284-9. 
  48. "Moon Facts". SMART-1. European Space Agency. 2010. Retrieved 12 Mey 2010. 
  49. 49.0 49.1 Wilhelms, Don (1987). "Relative Ages". Geologic History of the Moon (PDF). U.S. Geological Survey. Archived (PDF) frae the oreeginal on 11 Juin 2010. 
  50. Hartmann, William K.; Quantin, Cathy; Mangold, Nicolas (2007). "Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history". Icarus. 186 (1): 11–23. Bibcode:2007Icar..186...11H. doi:10.1016/j.icarus.2006.09.009. 
  51. "The Smell of Moondust". NASA. 30 Januar 2006. Archived frae the oreeginal on 8 Mairch 2010. Retrieved 15 Mairch 2010. 
  52. Heiken, G. (1991). Vaniman, D.; French, B., eds. Lunar Sourcebook, a user's guide to the Moon. New York: Cambridge University Press. p. 736. ISBN 978-0-521-33444-0. 
  53. Rasmussen, K.L.; Warren, P.H. (1985). "Megaregolith thickness, heat flow, and the bulk composition of the Moon". Nature. 313 (5998): 121–124. Bibcode:1985Natur.313..121R. doi:10.1038/313121a0. 
  54. Boyle, Rebecca. "The moon has hundreds more craters than we thought". Archived frae the oreeginal on 13 October 2016. 
  55. Speyerer, Emerson J.; Povilaitis, Reinhold Z.; Robinson, Mark S.; Thomas, Peter C.; Wagner, Robert V. (13 October 2016). "Quantifying crater production and regolith overturn on the Moon with temporal imaging". Nature. 538 (7624): 215–218. PMID 27734864. doi:10.1038/nature19829 – via www.nature.com. 
  56. Margot, J. L.; Campbell, D. B.; Jurgens, R. F.; Slade, M. A. (4 Juin 1999). "Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Locations". Science. 284 (5420): 1658–1660. Bibcode:1999Sci...284.1658M. PMID 10356393. doi:10.1126/science.284.5420.1658. 
  57. Ward, William R. (1 August 1975). "Past Orientation of the Lunar Spin Axis". Science. 189 (4200): 377–379. Bibcode:1975Sci...189..377W. PMID 17840827. doi:10.1126/science.189.4200.377. 
  58. 58.0 58.1 Martel, L. M. V. (4 Juin 2003). "The Moon's Dark, Icy Poles". Planetary Science Research Discoveries. Hawai'i Institute of Geophysics and Planetology. Archived frae the oreeginal on 15 Mairch 2012. Retrieved 12 Aprile 2007. 
  59. Seedhouse, Erik (2009). Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon. Springer-Praxis Books in Space Exploration. Germany: Springer Praxis. p. 136. ISBN 978-0-387-09746-6. 
  60. Coulter, Dauna (18 Mairch 2010). "The Multiplying Mystery of Moonwater". NASA. Retrieved 28 Mairch 2010. 
  61. Spudis, P. (6 November 2006). "Ice on the Moon". The Space Review. Archived frae the oreeginal on 22 Februar 2007. Retrieved 12 Aprile 2007. 
  62. Feldman, W. C.; S. Maurice; A. B. Binder; B. L. Barraclough; R. C. Elphic; D. J. Lawrence (1998). "Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles". Science. 281 (5382): 1496–1500. Bibcode:1998Sci...281.1496F. PMID 9727973. doi:10.1126/science.281.5382.1496. 
  63. Saal, Alberto E.; Hauri, Erik H.; Cascio, Mauro L.; van Orman, James A.; Rutherford, Malcolm C.; Cooper, Reid F. (2008). "Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior". Nature. 454 (7201): 192–195. Bibcode:2008Natur.454..192S. PMID 18615079. doi:10.1038/nature07047. 
  64. Pieters, C. M.; Goswami, J. N.; Clark, R. N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.-P.; Dyar, M. D.; Green, R.; Head, J. W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, S.; Livo, E.; Lundeen, S.; Malaret, E.; McCord, T.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L. A.; Tompkins, S.; Varanasi, P. (2009). "Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1". Science. 326 (5952): 568–72. Bibcode:2009Sci...326..568P. PMID 19779151. doi:10.1126/science.1178658. 
  65. Lakdawalla, Emily (13 November 2009). "LCROSS Lunar Impactor Mission: "Yes, We Found Water!"". The Planetary Society. Archived frae the original on 22 Januar 2010. Retrieved 13 Aprile 2010. 
  66. Colaprete, A.; Ennico, K.; Wooden, D.; Shirley, M.; Heldmann, J.; Marshall, W.; Sollitt, L.; Asphaug, E.; Korycansky, D.; Schultz, P.; Hermalyn, B.; Galal, K.; Bart, G. D.; Goldstein, D.; Summy, D. (1–5 Mairch 2010). "Water and More: An Overview of LCROSS Impact Results". 41st Lunar and Planetary Science Conference. 41 (1533): 2335. Bibcode:2010LPI....41.2335C. 
  67. Colaprete, Anthony; Schultz, Peter; Heldmann, Jennifer; Wooden, Diane; Shirley, Mark; Ennico, Kimberly; Hermalyn, Brendan; Marshall, William; Ricco, Antonio; Elphic, Richard C.; Goldstein, David; Summy, Dustin; Bart, Gwendolyn D.; Asphaug, Erik; Korycansky, Don; Landis, David; Sollitt, Luke (22 October 2010). "Detection of Water in the LCROSS Ejecta Plume". Science. 330 (6003): 463–468. Bibcode:2010Sci...330..463C. PMID 20966242. doi:10.1126/science.1186986. 
  68. Hauri, Erik; Thomas Weinreich; Albert E. Saal; Malcolm C. Rutherford; James A. Van Orman (26 Mey 2011). "High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions". Science Express. 10 (1126): 213–215. Bibcode:2011Sci...333..213H. doi:10.1126/science.1204626. 
  69. Muller, P.; Sjogren, W. (1968). "Mascons: lunar mass concentrations". Science. 161 (3842): 680–684. Bibcode:1968Sci...161..680M. PMID 17801458. doi:10.1126/science.161.3842.680. 
  70. Richard A. Kerr (12 Aprile 2013). "The Mystery of Our Moon's Gravitational Bumps Solved?". Science. 340: 138–139. PMID 23580504. doi:10.1126/science.340.6129.138-a. 
  71. Konopliv, A.; Asmar, S.; Carranza, E.; Sjogren, W.; Yuan, D. (2001). "Recent gravity models as a result of the Lunar Prospector mission". Icarus. 50 (1): 1–18. Bibcode:2001Icar..150....1K. doi:10.1006/icar.2000.6573. 
  72. Garrick-Bethell, Ian; Weiss, iBenjamin P.; Shuster, David L.; Buz, Jennifer (2009). "Early Lunar Magnetism". Science. 323 (5912): 356–359. Bibcode:2009Sci...323..356G. PMID 19150839. doi:10.1126/science.1166804. 
  73. "Magnetometer / Electron Reflectometer Results". Lunar Prospector (NASA). 2001. Archived frae the original on 27 Mey 2010. Retrieved 17 Mairch 2010. 
  74. Hood, L.L.; Huang, Z. (1991). "Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations". Journal of Geophysical Research. 96 (B6): 9837–9846. Bibcode:1991JGR....96.9837H. doi:10.1029/91JB00308. 
  75. "Moon Storms". NASA. 27 September 2013. Archived frae the oreeginal on 12 September 2013. Retrieved 3 October 2013. 
  76. Culler, Jessica (16 Juin 2015). "LADEE - Lunar Atmosphere Dust and Environment Explorer". Archived frae the oreeginal on 8 Aprile 2015. 
  77. Globus, Ruth (1977). "Chapter 5, Appendix J: Impact Upon Lunar Atmosphere". In Richard D. Johnson & Charles Holbrow. Space Settlements: A Design Study. NASA. Archived frae the oreeginal on 31 Mey 2010. Retrieved 17 Mairch 2010. 
  78. Crotts, Arlin P.S. (2008). "Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data" (PDF). The Astrophysical Journal. 687: 692–705. Bibcode:2008ApJ...687..692C. arXiv:0706.3949. doi:10.1086/591634. Archived (PDF) frae the oreeginal on 20 Februar 2009. 
  79. Steigerwald, William (17 August 2015). "NASA's LADEE Spacecraft Finds Neon in Lunar Atmosphere". NASA. Archived frae the oreeginal on 19 August 2015. Retrieved 18 August 2015. 
  80. 80.0 80.1 80.2 Stern, S.A. (1999). "The Lunar atmosphere: History, status, current problems, and context". Reviews in Geophysical. 37 (4): 453–491. Bibcode:1999RvGeo..37..453S. doi:10.1029/1999RG900005. 
  81. Lawson, S.; Feldman, W.; Lawrence, D.; Moore, K.; Elphic, R.; Belian, R. (2005). "Recent outgassing from the lunar surface: the Lunar Prospector alpha particle spectrometer". Journal of Geophysical Research. 110 (E9): 1029. Bibcode:2005JGRE..11009009L. doi:10.1029/2005JE002433. 
  82. R. Sridharan; S. M. Ahmed; Tirtha Pratim Dasa; P. Sreelathaa; P. Pradeepkumara; Neha Naika; Gogulapati Supriya (2010). "'Direct' evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I". Planetary and Space Science. 58 (6): 947–950. Bibcode:2010P&SS...58..947S. doi:10.1016/j.pss.2010.02.013. 
  83. Drake, Nadia; 17, National Geographic PUBLISHED June. "Lopsided Cloud of Dust Discovered Around the Moon". National Geographic News. Archived frae the oreeginal on 19 Juin 2015. Retrieved 20 Juin 2015. 
  84. Horányi, M.; Szalay, J. R.; Kempf, S.; Schmidt, J.; Grün, E.; Srama, R.; Sternovsky, Z. (18 Juin 2015). "A permanent, asymmetric dust cloud around the Moon". Nature. 522 (7556): 324–326. Bibcode:2015Natur.522..324H. PMID 26085272. doi:10.1038/nature14479. 
  85. Hamilton, Calvin J.; Hamilton, Rosanna L., The Moon, Views of the Solar System Archived 4 February 2016 at the Wayback Machine., 1995–2011.
  86. 86.0 86.1 Amos, Jonathan (16 December 2009). "'Coldest place' found on the Moon". BBC News. Retrieved 20 Mairch 2010. 
  87. "Diviner News". UCLA. 17 September 2009. Archived frae the original on 7 Mairch 2010. Retrieved 17 Mairch 2010. 
  88. Rocheleau, Jake. "Temperature on the Moon – Surface Temperature of the Moon – PlanetFacts.org". Archived frae the oreeginal on 27 Mey 2015. 
  89. Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels, U. of Western Australia
  90. V V Belet︠s︡kiĭ (2001). Essays on the Motion of Celestial Bodies. Birkhäuser. p. 183. ISBN 978-3-7643-5866-2. 
  91. "Space Topics: Pluto and Charon". The Planetary Society. Archived frae the original on 15 Mairch 2012. Retrieved 6 Aprile 2010. 
  92. "Planet Definition Questions & Answers Sheet" (DOC). International Astronomical Union. 2006. Archived frae the oreeginal on 29 Aprile 2014. Retrieved 24 Mairch 2010. 
  93. Alexander, M. E. (1973). "The Weak Friction Approximation and Tidal Evolution in Close Binary Systems". Astrophysics and Space Science. 23 (2): 459–508. Bibcode:1973Ap&SS..23..459A. doi:10.1007/BF00645172. 
  94. Phil Plait. "Dark Side of the Moon". Bad Astronomy: Misconceptions. Archived frae the oreeginal on 12 Aprile 2010. Retrieved 15 Februar 2010. 
  95. "Moon used to spin 'on different axis'". BBC. Archived frae the oreeginal on 23 Mairch 2016. Retrieved 23 Mairch 2016. 
  96. Luciuk, Mike. "How Bright is the Moon?". Amateur Astronomers. Archived frae the oreeginal on 12 Mairch 2010. Retrieved 16 Mairch 2010. 
  97. Hershenson, Maurice (1989). The Moon illusion. Routledge. p. 5. ISBN 978-0-8058-0121-7. 
  98. Spekkens, K. (18 October 2002). "Is the Moon seen as a crescent (and not a "boat") all over the world?". Curious About Astronomy. Archived frae the oreeginal on 16 October 2015. Retrieved 28 September 2015. 
  99. "Moonlight helps plankton escape predators during Arctic winters". New Scientist. 16 Januar 2016. Archived frae the oreeginal on 30 Januar 2016. 
  100. ""Super Moon" exceptional. Brightest moon in the sky of Normandy, Monday, November 14 - The Siver Times". Archived frae the oreeginal on 14 November 2016. 
  101. "Moongazers Delight — Biggest Supermoon In Decades Looms Large Sunday Night". 10 November 2016. Archived frae the oreeginal on 14 November 2016. 
  102. "Supermoon November 2016". Space.com. 13 November 2016. Archived frae the oreeginal on 14 November 2016. Retrieved 14 November 2016. 
  103. Tony Phillips (16 Mairch 2011). "Super Full Moon". NASA. Archived frae the original on 7 Mey 2012. Retrieved 19 Mairch 2011. 
  104. Richard K. De Atley (18 Mairch 2011). "Full moon tonight is as close as it gets". The Press-Enterprise. Archived frae the original on 22 Mairch 2011. Retrieved 19 Mairch 2011. 
  105. "'Super moon' to reach closest point for almost 20 years". The Guardian. 19 Mairch 2011. Archived frae the oreeginal on 25 December 2013. Retrieved 19 Mairch 2011. 
  106. Georgia State University, Dept. of Physics (Astronomy). "Perceived Brightness". Brightnes and Night/Day Sensitivity. Georgia State University. Archived frae the oreeginal on 21 Februar 2014. Retrieved 25 Januar 2014. 
  107. Lutron. "Measured light vs. perceived light" (PDF). From IES Lighting Handbook 2000, 27-4. Lutron. Archived (PDF) frae the oreeginal on 5 Februar 2013. Retrieved 25 Januar 2014. 
  108. Walker, John (Mey 1997). "Inconstant Moon". Earth and Moon Viewer. Fourth paragraph of "How Bright the Moonlight": Fourmilab. Archived frae the oreeginal on 14 December 2013. Retrieved 23 Januar 2014. 14% [...] due to the logarithmic response of the human eye. 
  109. Taylor, G.J. (8 November 2006). "Recent Gas Escape from the Moon". Planetary Science Research Discoveries. Hawai'i Institute of Geophysics and Planetology. Archived frae the oreeginal on 4 Mairch 2007. Retrieved 4 Aprile 2007. 
  110. Schultz, P. H.; Staid, M. I.; Pieters, C. M. (2006). "Lunar activity from recent gas release". Nature. 444 (7116): 184–186. Bibcode:2006Natur.444..184S. PMID 17093445. doi:10.1038/nature05303. 
  111. "22 Degree Halo: a ring of light 22 degrees from the sun or moon". Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign. Retrieved 13 Aprile 2010. 
  112. 112.0 112.1 112.2 112.3 112.4 Lambeck, K. (1977). "Tidal Dissipation in the Oceans: Astronomical, Geophysical and Oceanographic Consequences". Philosophical Transactions of the Royal Society A. 287 (1347): 545–594. Bibcode:1977RSPTA.287..545L. doi:10.1098/rsta.1977.0159. 
  113. Le Provost, C.; Bennett, A. F.; Cartwright, D. E. (1995). "Ocean Tides for and from TOPEX/POSEIDON". Science. 267 (5198): 639–42. Bibcode:1995Sci...267..639L. PMID 17745840. doi:10.1126/science.267.5198.639. 
  114. 114.0 114.1 114.2 114.3 Touma, Jihad; Wisdom, Jack (1994). "Evolution of the Earth-Moon system". The Astronomical Journal. 108 (5): 1943–1961. Bibcode:1994AJ....108.1943T. doi:10.1086/117209. 
  115. Chapront, J.; Chapront-Touzé, M.; Francou, G. (2002). "A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements". Astronomy and Astrophysics. 387 (2): 700–709. Bibcode:2002A&A...387..700C. doi:10.1051/0004-6361:20020420. 
  116. "Why the Moon is getting further away from Earth". BBC News. 1 Februar 2011. Archived frae the oreeginal on 25 September 2015. Retrieved 18 September 2015. 
  117. Ray, R. (15 Mey 2001). "Ocean Tides and the Earth's Rotation". IERS Special Bureau for Tides. Archived frae the oreeginal on 27 Mairch 2010. Retrieved 17 Mairch 2010. 
  118. Murray, C.D.; Dermott, Stanley F. (1999). Solar System Dynamics. Cambridge University Press. p. 184. ISBN 978-0-521-57295-8. 
  119. Dickinson, Terence (1993). From the Big Bang to Planet X. Camden East, Ontario: Camden House. pp. 79–81. ISBN 978-0-921820-71-0. 
  120. Latham, Gary; Ewing, Maurice; Dorman, James; Lammlein, David; Press, Frank; Toksőz, Naft; Sutton, George; Duennebier, Fred; Nakamura, Yosio (1972). "Moonquakes and lunar tectonism". Earth, Moon, and Planets. 4 (3–4): 373–382. Bibcode:1972Moon....4..373L. doi:10.1007/BF00562004. 
  121. Phillips, Tony (12 Mairch 2007). "Stereo Eclipse". Science@NASA. Archived frae the original on 10 Juin 2008. Retrieved 17 Mairch 2010. 
  122. Espenak, F. (2000). "Solar Eclipses for Beginners". MrEclip]]. Retrieved 17 Mairch 2010. 
  123. Walker, John (10 Julie 2004). "Moon near Perigee, Earth near Aphelion". Fourmilab. Archived frae the oreeginal on 8 December 2013. Retrieved 25 December 2013. 
  124. Thieman, J.; Keating, S. (2 Mey 2006). "Eclipse 99, Frequently Asked Questions". NASA. Archived frae the original on 11 Februar 2007. Retrieved 12 Aprile 2007. 
  125. Espenak, F. "Saros Cycle". NASA. Archived frae the original on 24 Mey 2012. Retrieved 17 Mairch 2010. 
  126. Guthrie, D.V. (1947). "The Square Degree as a Unit of Celestial Area". Popular Astronomy. Vol. 55. pp. 200–203. Bibcode:1947PA.....55..200G. 
  127. "Total Lunar Occultations". Royal Astronomical Society of New Zealand. Archived frae the original on 23 Februar 2010. Retrieved 17 Mairch 2010. 

Bibliography[eedit | eedit soorce]