Jump to content

Ordinary differential equation

Frae Wikipedia, the free beuk o knawledge

Ordinary differential equations (ODEs) are differential equations that contains functions o a single variable an thair derivatives.

  • Arnolʹd, V. I., Ordinary differential equations. Springer.
  • Wolfgang Walter, Ordinary differential equations. Springer.
  • Logemann, H., & Ryan, E. P. (2014). Ordinary differential equations: Analysis, qualitative theory and control. Springer.
  • Hermann, M., & Saravi, M. (2014). A First Course in Ordinary Differential Equations. Analytical and Numerical Methods, Springer India.
  • Chicone, C. (2006). Ordinary differential equations with applications. Springer Science & Business Media.
  • Hartman, P. (2002). Ordinary differential equations, Classics in Applied Mathematics, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-510-1.
  • Teschl, G. (2012). Ordinary Differential Equations and Dynamical Systems. Providence: American Mathematical Society. ISBN 978-0-8218-8328-0.

Saftware

[eedit | eedit soorce]

References

[eedit | eedit soorce]
  1. https://www.maplesoft.com/support/help/Maple/view.aspx?path=dsolve
  2. Betounes, D. (2013). Differential Equations: Theory and Applications: With Maple®. Springer Science & Business Media.
  3. Quarteroni, A., Saleri, F., & Gervasio, P. (2006). Scientific computing with MATLAB and Octave. Berlin: Springer.
  4. Gander, W., & Hrebicek, J. (Eds.). (2011). Solving problems in scientific computing using Maple and Matlab®. Springer Science & Business Media.
  5. Barnes, B., & Fulford, G. R. (2011). Mathematical modelling with case studies: a differential equations approach using Maple and MATLAB. Chapman and Hall/CRC.
  6. Wouwer, A. V., Saucez, P., & Vilas, C. (2014). Simulation of Ode/Pde Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications. Springer.
  7. Houcque, D. (2008). Applications of MATLAB: Ordinary differential equations (ODE). Robert R. McCormick School of Engineering and Applied Science-Northwestern University, Evanston.
  8. Shampine, L. F., & Reichelt, M. W. (1997). The matlab ode suite. SIAM Journal on Scientific Computing, 18(1), 1-22.
  9. Ashino, R., Nagase, M., & Vaillancourt, R. (2000). Behind and beyond the MATLAB ODE suite. Computers & Mathematics with Applications, 40(4-5), 491-512.
  10. Baumann, G. (2013). Symmetry analysis of differential equations with Mathematica®. Springer Science & Business Media.
  11. Abell, M. L., & Braselton, J. P. (2016). Differential equations with Mathematica. Academic Press.
  12. Gray, A., Mezzino, M., & Pinsky, M. A. (1997). Introduction to ordinary differential equations with Mathematica: an integrated multimedia approach. Springer.
  13. Ross, C. C. (2013). Differential equations: an introduction with Mathematica®. Springer Science & Business Media.
  14. http://doc.sagemath.org/html/en/tutorial/tour_algebra.html
  15. Zimmermann, P., Casamayou, A., Cohen, N., Connan, G., Dumont, T., Fousse, L., ... & Thiéry, N. M. (2018). Computational mathematics with SageMath. Society for Industrial and Applied Mathematics.
  16. http://www-fourier.ujf-grenoble.fr/~parisse/giac/cascmd_en.pdf
[eedit | eedit soorce]