Genetics

Frae Wikipedia
Lowp tae: navigation, rake

Genetics (frae the Auncient Greek γενετικός genetikos meanin "genitive"/"generative", in turn frae γένεσις genesis meanin "oreegin"),[1][2][3] a field in biology, is the science o genes, heredity, an variation in livin organisms.[4][5]

The faither o genetics is Gregor Mendel, a late 19t-century scientist an Augustinian freear. Mendel studied "trait inheritance", patterns in the wey traits are haundit doun frae paurents tae affspring. He observed that organisms (pease plants) inherit traits bi way o discrete "units o inheritance". This term, still uised the day, is a somewhit ambiguous definition o whit is referred tae as a gene.

Trait inheritance an molecular inheritance mechanisms o genes are still primar principles o genetics in the 21st century, but modren genetics has expaundit ayont inheritance tae studyin the function an behaviour o genes. Gene structur andfunction, variation, an distribution are studied within the context o the cell, the organism (e.g. dominance), an within the context o a population. Genetics haes gien rise tae a nummer o subfields, includin epigenetics an population genetics. Organisms studied within the broad field span the domeen o life, includin bacteria, plants, ainimals, an humans.

Genetic processes wark in combination wi an organism's environment an experiences tae influence development an behaviour, eften referred tae as naitur versus nurtur. The intracellular or extracellular environment o a cell or organism mey switch gene transcription on or off. A clessic ensaumple is twa seeds o genetically identical maize, ane placed in a temperate climate an ane in an arid climate. While the average hicht o the twa maize stauks mey be genetically determined tae be equal, the ane in the arid climate anerly growes tae hauf the hicht o the ane in the temperate climate due tae lack o watter an nutrients in its environment.

Etymology[eedit | eedit soorce]

The wird genetics stems frae the auncient Greek γενετικός genetikos meanin "genitive"/"generative", that in turn derives frae γένεσις genesis meanin "oreegin".[6][7][8]

History[eedit | eedit soorce]

DNA, the molecular basis for biological heirship. Ilk straund o DNA is a cheen o nucleotides, matchin ilk ither in the centre tae form whit leuk lik rungs on a twisted ledder.

The observation that leevin things faw heir tae traits frae thair parents haes been uised syne prehistoric times tae impruive crap plants an ainimals throu selective breedin.[9] The modren science o genetics, seekin tae unnerstaund this process, begoud wi the wark o the Augustinian freear Gregor Mendel in the mid-19t century.[10]

Prior tae Mendel, Imre Festetics, a Hungarian noble, wha lived in Kőszeg afore Mendel, wis the first wha uised the wird "genetics." He descrived several rules o genetic heirship in his wirk The genetic law o the Naitur (Die genetische Gesätze der Natur, 1819). His seicont law is the same as whit Mendel published. In his third law, he developed the basic principles o mutation (he can be conseedert a forerunner o Hugo de Vries).[11]

Modren genetics stairtit wi Mendel's studies o the naitur o heirship in plants. In his paper "Versuche über Pflanzenhybriden" ("Experiments on Plant Hybridisation"), presentit in 1865 tae the Naturforschender Verein (Society for Resairch in Naitur) in Brünn, Mendel traced the heirship patterns o certain traits in pease plants an descrived them mathematically.[12] Awtho this pattern o heirship coud anerly be observed for a few traits, Mendel's wark suggestit that heirship wis pairticulate, nae acquired, an that the heirship patterns o mony traits coud be explained throu semple rules an ratios.

The importance o Mendel's wirk did nae gain wide unnderstaundin till 1900, efter his daith, whan Hugo de Vries an ither scientists rediscovered his resairch. William Bateson, a proponent o Mendel's wark, mentioned the wird genetics in 1905[13][14] (the adjective genetic, derived frae the Greek wird genesis—γένεσις, "oreegin", predates the noun an wis first uised in a biological sense in 1860[15]).

Molecular genetics[eedit | eedit soorce]

Awtho genes war kent tae exist on chromosomes, chromosomes are composed o baith protein an DNA, an scientists did nae knaw that o the twa is responsible for heirship. In 1928, Frederick Griffith discovered the phenomenon o transformation (see Griffith's experiment): deid bacteria coud transfer genetic material tae "transform" ither still-leevin bacteria. Saxteen years later, in 1944, the Avery–MacLeod–McCarty experiment identifee'd DNA as the molecule responsible for transformation.[16]

James Watson an Francis Crick determined the structur o DNA in 1953, uisin the X-ray crystallografie wark o Rosalind Franklin an Maurice Wilkins that indicatit DNA haes a helical structur (i.e., shapit lik a corkscrew).[17][18] Their double-helix model had two strands of DNA with the nucleotides pointing inward, each matching a complementary nucleotide on the other strand to form what look like rungs on a twisted ladder.[19]

Featurs o heirship[eedit | eedit soorce]

Discrete heirship an Mendel's laws[eedit | eedit soorce]

At its maist fundamental level, heirship in organisms occurs bi passin discrete heritable units, cried genes, frae paurents tae affspring.[20] This property wis first observed bi Gregor Mendel, wha studied the segregation o heritable traits in pease plants.[12][21] In his experiments studyin the trait for flouer colour, Mendel observed that the flouers o ilk pease plant war aither purpie or white—but niver an intermediate atween the two colors. Thir different, discrete versions o the same gene are cried alleles.

In the case o the pease, that is a diploid species, ilk individual plant haes twa copies o ilk gene, ane copy inheritit frae ilk parent.[22] Mony species, includin humans, hae this pattern o heirship. Diploid organisms wi twa copies o the same allele o a gien gene are cried homozygous at that gene locus, while organisms wi twa different alleles o a gien gene are cried heterozygous.

The set o alleles for a gien organism is cried its genoteep, while the observable traits o the organism are cried its phenoteep. When organisms are heterozygous at a gene, eften ane allele is called dominant as its qualities dominate the phenoteep o the organism, while the ither allele is cried recessive as its qualities recede an are nae observed. Some alleles dae nae hae complete dominance an insteid hae incomplete dominance bi expressin an intermediate phenoteep, or codominance bi expressin baith alleles at ance.[23]

Multiple gene interactions[eedit | eedit soorce]

Human height is a trait wi complex genetic causes. Francis Galton's data frae 1889 shaws the relationship atween offspring hicht as a function o mean paurent hicht.

Organisms hae thoosands o genes, an in sexually reproducin organisms thir genes generally assort independently o ilk ither. This means that the inheritance o an allele for yellae or green pease colour is unrelatit to the inheritance o alleles for white or purple flouers. This phenomenon, kent as "Mendel's seicont law" or the "law o independent assortment," means that the alleles ofdifferent genes get shuffled atween paurents tae form offspring wi mony different combinations. (Some genes dae nae assort independently, demonstratin genetic linkage, a tapic discussed later in this airticle.)

Eften different genes can interact in a wey that influences the same trait. In the Blue-eed Mary (Omphalodes verna), for example, thare exeests a gene wi alleles that determine the colour o flouers: blue or magenta. Anither gene, houever, controls whither the flouers hae color at aw or are white. Whan a plant has twa copies o this white allele, its flowers are white—regairdless o whither the first gene haes blue or magenta alleles. This interaction atween genes is called epistasis, wi the seicont gene epistatic tae the first.[24]

Mony traits are nae discrete featurs (e.g. purpie or white flouers) but are insteid conteenuous featurs (e.g. human hicht an skin colour). Thir complex traits are products o mony genes.[25] The influence o these genes is mediatit, tae varyin degrees, bi the environment an organism haes experienced. The degree tae which an organism's genes contreibute tae a complex trait is cried heritability.[26] Meisurment o the heritability o a trait is relative—in a mair variable environment, the environment has a bigger influence on the tot variation o the trait. For example, human hicht is a trait wi complex causes. It haes a heritability o 89% in the Unitit States. In Nigerie, houever, whaur fowk experience a mair variable access tae guid nutreetion an heal care, hicht has a heritability o anerly 62%.[27]

Molecular basis for inheritance[eedit | eedit soorce]

DNA an chromosomes[eedit | eedit soorce]

Main articles: DNA and Chromosome
The molecular structur o DNA. Bases pair throu the arrangement o hydrogen bondin atween the straunds.

The molecular basis for genes is deoxyribonucleic acid (DNA). DNA is componed o a cheen o nucleotides, o that thare are fower teeps: adenine (A), cytosine (C), guanine (G), an thymine (T). Genetic information exeests in the sequence o thir nucleotides, an genes exeest as stretches o sequence alang the DNA cheen.[28] Viruses are the anerly exception tae this rule—whiles viruses uise the verra seemilar molecule RNA insteid o DNA as thair genetic material.[29] Viruses canna reproduce withoot a host an are unaffectit bi mony genetic processes, sae tend nae tae be conseedert leevin organisms.

DNA normally exeests as a dooble-straundit molecule, cyled intae the shape o a dooble helix. Ilk nucleotide in DNA preferentially pairs wi its partner nucleotide on the opposite straund: A pairs wi T, an C pairs wi G. Sicweys, in its twa-straundit form, ilk straund effectively conteens aw necessary information, redundant wi its pairtner straund. This structur o DNA is the pheesical basis for heirship: DNA replication duplicates the genetic information bi splittin the straunds an uisin ilk straund as a template for synthesis o a new pairtner straund.[30]

Genes are arranged linearly alang lang cheens o DNA base-pair sequences. In bacteria, ilk cell uisually conteens a single circular genophore, while eukaryotic organisms (sic as plants an ainimals) hae their DNA arranged in multiple linear chromosomes. Thir DNA strands are eften extremely lang; the lairgest human chromosome, for example, is aboot 247 million base pairs in lenth.[31] The DNA o a chromosome is associatit wi structural proteins that organize, compact, an control access tae the DNA, formin a material cried chromatin; in eukaryotes, chromatin is uisually componed o nucleosomes, segments o DNA woond aroond cores o histone proteins.[32] The full set o hereditary material in an organism (uisually the combined DNA sequences o aw chromosomes) is cried the genome.

While haploid organisms hae anerly ane copy o ilk chromosome, maist ainimals an mony plants are diploid, conteenin twa o ilk chromosome an sicweys twa copies o ivery gene.[22]

Mony species hae sae-cried sex chromosomes that determine the gender o ilk organism.[33] In humans an mony ither ainimals, the Y chromosome conteens the gene that triggers the development o the speceefically male chairactereestics.

Reproduction[eedit | eedit soorce]

When cells divide, thair full genome is copied an ilk dauchter cell inherits ane copy. This process, cried mitosis, is the semplest form o reproduction an is the basis for asexual reproduction. Asexual reproduction can an aa occur in multicellular organisms, producin affspring that inherit thair genome frae a single paurent. Affspring that are genetically identical tae thair paurents are cried clones.

Eukaryotic organisms eften uise sexual reproduction tae generate affspring that conteen a mixtur o genetic material inheritit frae twa different paurents. The process o sexual reproduction alternates atween forms that conteen single copies o the genome (haploid) an dooble copies (diploid).[22]

Gene expression[eedit | eedit soorce]

Genetic code[eedit | eedit soorce]

The genetic code: Uisin a triplet code, DNA, throu a messenger RNA intermediary, specifees a protein.

Genes generally express thair functional effect throu the production o proteins, that are complex molecules responsible for maist functions in the cell. Proteins are made up o ane or mair polypeptide cheens, ilk o that is componed o a sequence o amino acids, an the DNA sequence o a gene (throu an RNA intermediate) is uised tae produce a speceefic amino acid sequence. This process begins wi the production o an RNA molecule wi a sequence matchin the gene's DNA sequence, a process cried transcription.

This messenger RNA molecule is then uised tae produce a correspondin amino acid sequence throu a process cried translation. Ilk group o three nucleotides in the sequence, cried a codon, corresponds aither tae ane o the twinty possible amino acids in a protein or an instruction tae end the amino acid sequence; this correspondence is cried the genetic code.[34]

Naitur an nurtur[eedit | eedit soorce]

Main article: Naitur an nurtur
Siamese cats hae a temperature-sensitive pigment-production mutation.

Awtho genes conteen aw the information an organism uises tae function, the environment plays an important role in determinin the ultimate phenoteeps an organism displays. The phrase "naitur an nurtur" refers tae this complementary relationship. The phenoteep o an organism depends on the interaction o genes an the environment. An interestin ensaumple is the coat coloration o the Siamese cat. In this case, the bouk temperatur o the cat plays the role o the environment. The cat's genes code for daurk hair, sicweys the hair-producin cells in the cat mak cellular proteins resultin in daurk hair. But thir daurk hair-producin proteins are sensitive tae temperatur (i.e. hae a mutation causin temperature-sensitivity) an denaitur in heicher-temperatur environments, failin tae produce daurk-hair pigment in auries whaur the cat haes a heicher bouk temperatur. In a law-temperatur environment, houever, the protein's structureis stable an produces daurk-hair pigment normally. The protein remeens functional in auries o skin that are caulder—sic as its legs, lugs, tail an face—sae the cat has daurk-hair at its extremities.[35]

Genetic cheenge[eedit | eedit soorce]

Mutations[eedit | eedit soorce]

Main article: Mutation
Gene duplication allous diversification bi providin redundancy: ane gene can mutate an lose its oreeginal function withoot haurmin the organism.

In the process o DNA replication, errors occasionally occur in the polymerisation o seicont strand. Thir errors, cried mutations, can affect the phenoteep o an organism, especially if they occur within the protein codin sequence o a gene. Error rates are uisually verra law—1 error in ivery 10–100 million bases—due tae the "pruifreadin" ability o DNA polymerases.[36][37] Processes that increase the rate o cheenges in DNA are cried mutagenic: mutagenic chemicals promote errors in DNA replication, eften bi interferin wi the structur o base-pairin, while UV radiation induces mutations bi causin damage tae the DNA structur.[38] Chemical damage tae DNA occurs naiturally as well an cells uise DNA repair mechanisms tae repair mismatches an breaks. The repair daes nae, houever, alweys restore the oreeginal sequence.

Ower mony generations, the genomes o organisms can cheenge signeeficantly, resultin in evolution. In the process cried adaptation, selection for beneficial mutations can cause a species tae evolve intae forms better able tae survive in thair environment.[39]

References[eedit | eedit soorce]

  1. "Genetikos (γενετ-ικός)". Henry George Liddell, Robert Scott, A Greek-English Lexicon. Perseus Digital Library, Tufts University. Retrieved 20 Februar 2012. 
  2. "Genesis (γένεσις)". Henry George Liddell, Robert Scott, A Greek-English Lexicon. Perseus Digital Library, Tufts University. Retrieved 20 Februar 2012. 
  3. "Genetic". Online Etymology Dictionary. Retrieved 20 Februar 2012. 
  4. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Genetics and the Organism: Introduction". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  5. Hartl D, Jones E (2005)
  6. "Genetikos (γενετ-ικός)". Henry George Liddell, Robert Scott, A Greek-English Lexicon. Perseus Digital Library, Tufts University. Retrieved 20 Februar 2012. 
  7. "Genesis (γένεσις)". Henry George Liddell, Robert Scott, A Greek-English Lexicon. Perseus Digital Library, Tufts University. Retrieved 20 Februar 2012. 
  8. "Genetic". Online Etymology Dictionary. Retrieved 20 Februar 2012. 
  9. DK Publishing (2009). Science: The Definitive Visual Guide. Penguin. p. 362. ISBN 978-0-7566-6490-9. 
  10. Weiling, F (1991). "Historical study: Johann Gregor Mendel 1822–1884". American Journal of Medical Genetics. 40 (1): 1–25; discussion 26. doi:10.1002/ajmg.1320400103. PMID 1887835. 
  11. Poczai P.; Bell N.; Hyvönen J. (2014). "Imre Festetics and the Sheep Breeders' Society of Moravia: Mendel's Forgotten "Research Network"". PLoS Biology. 12 (1): e1001772. doi:10.1371/journal.pbio.1001772. PMC 3897355Freely accessible. PMID 24465180. 
  12. 12.0 12.1 Blumberg, Roger B. "Mendel's Paper in English". 
  13. genetics, n., Oxford English Dictionary, 3rd ed.
  14. Bateson W. "Letter from William Bateson to Alan Sedgwick in 1905". The John Innes Centre. Archived frae the oreeginal on 13 October 2007. Retrieved 15 Mairch 2008.  Note that the letter was to an Adam Sedgwick, a zoologist and "Reader in Animal Morphology" at Trinity College, Cambridge
  15. genetic, adj., Oxford English Dictionary, 3rd ed.
  16. Avery, OT; MacLeod, CM; McCarty, M (1944). "Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III". The Journal of Experimental Medicine. 79 (2): 137–58. doi:10.1084/jem.79.2.137. PMC 2135445Freely accessible. PMID 19871359.  Reprint: Avery, OT; MacLeod, CM; McCarty, M (1979). "Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III". The Journal of Experimental Medicine. 149 (2): 297–326. doi:10.1084/jem.149.2.297. PMC 2184805Freely accessible. PMID 33226. 
  17. Judson, Horace (1979). The Eighth Day of Creation: Makers of the Revolution in Biology. Cold Spring Harbor Laboratory Press. pp. 51–169. ISBN 0-87969-477-7. 
  18. Watson, J. D.; Crick, FH (1953). "Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid" (PDF). Nature. 171 (4356): 737–8. Bibcode:1953Natur.171..737W. doi:10.1038/171737a0. PMID 13054692. 
  19. Watson, J. D.; Crick, FH (1953). "Genetical Implications of the Structure of Deoxyribonucleic Acid" (PDF). Nature. 171 (4361): 964–7. Bibcode:1953Natur.171..964W. doi:10.1038/171964b0. PMID 13063483. 
  20. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Patterns of Inheritance: Introduction". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  21. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Mendel's experiments". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  22. 22.0 22.1 22.2 Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Mendelian genetics in eukaryotic life cycles". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  23. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Interactions between the alleles of one gene". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  24. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Gene interaction and modified dihybrid ratios". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  25. Mayeux, R (2005). "Mapping the new frontier: complex genetic disorders". The Journal of Clinical Investigation. 115 (6): 1404–7. doi:10.1172/JCI25421. PMC 1137013Freely accessible. PMID 15931374. 
  26. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Quantifying heritability". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  27. Luke, A; Guo, X; Adeyemo, AA; Wilks, R; Forrester, T; Lowe Jr, W; Comuzzie, AG; Martin, LJ; Zhu, X; Rotimi, CN; Cooper, RS (2001). "Heritability of obesity-related traits among Nigerians, Jamaicans and US black people". International Journal of Obesity and Related Metabolic Disorders. 25 (7): 1034–41. doi:10.1038/sj.ijo.0801650. PMID 11443503. 
  28. Pearson, H (2006). "Genetics: what is a gene?". Nature. 441 (7092): 398–401. Bibcode:2006Natur.441..398P. doi:10.1038/441398a. PMID 16724031. 
  29. Prescott, L (1993). Microbiology. Wm. C. Brown Publishers. ISBN 0-697-01372-3. 
  30. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Mechanism of DNA Replication". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  31. Gregory, SG; Barlow, KF; McLay, KE; Kaul, R; Swarbreck, D; Dunham, A; Scott, CE; Howe, KL; et al. (2006). "The DNA sequence and biological annotation of human chromosome 1". Nature. 441 (7091): 315–21. Bibcode:2006Natur.441..315G. doi:10.1038/nature04727. PMID 16710414. 
  32. Alberts et al. (2002), II.4. DNA and chromosomes: Chromosomal DNA and Its Packaging in the Chromatin Fiber
  33. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Sex chromosomes and sex-linked inheritance". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  34. Berg JM, Tymoczko JL, Stryer L, Clarke ND (2002). "I. 5. DNA, RNA, and the Flow of Genetic Information: Amino Acids Are Encoded by Groups of Three Bases Starting from a Fixed Point". Biochemistry (5th ed.). New York: W. H. Freeman and Company. 
  35. Imes, DL; Geary, LA; Grahn, RA; Lyons, LA (2006). "Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation". Animal Genetics. 37 (2): 175–8. doi:10.1111/j.1365-2052.2005.01409.x. PMC 1464423Freely accessible. PMID 16573534. 
  36. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Spontaneous mutations". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  37. Freisinger, E; Grollman, AP; Miller, H; Kisker, C (2004). "Lesion (in)tolerance reveals insights into DNA replication fidelity". The EMBO Journal. 23 (7): 1494–505. doi:10.1038/sj.emboj.7600158. PMC 391067Freely accessible. PMID 15057282. 
  38. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000). "Induced mutations". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 0-7167-3520-2. 
  39. Darwin, Charles (1859). On the Origin of Species (1st ed.). London: John Murray. p. 1. ISBN 0-8014-1319-2. 
    Earlier related ideas were acknowledged in Darwin, Charles (1861). On the Origin of Species (3rd ed.). London: John Murray. xiii. ISBN 0-8014-1319-2.