Jump to content

Shinichi Oishi

Frae Wikipedia, the free beuk o knawledge
Shinichi Oishi
Born1953
Naitionality Japan
Alma materWaseda Varsity
Kent forValidatit numerics
Scientific career
FieldsNumerical analysis
Information theory[1]
Electrical circuit[2]
InstitutionsWaseda Varsity
Pierre an Marie Curie Varsity (Fraunce)

Shinichi Oishi is a Japanese mathematician at Waseda Varsity.[3]

Research

[eedit | eedit soorce]

Oishi haes done mony studies in numerical analysis an thair branches:

Year Notes[3]
Syne 1980 Teacher at Waseda Varsity
1990 Receivit the Azusa Ono Memorial Awaird (ja:小野梓記念賞)
1993, 1995 an 1997 Best Paper Awaird frae the IEICE (The Institute o Electronics, Information an Communication Engineers)[12][13]
Syne 2011 Visitin professor at the Pierre an Marie Curie varsity,[14] France
2012 Receivit the Medal wi Purpie Ribbon bi the govrenment
2019 - 2023 ICIAM 2023 director[15]

References

[eedit | eedit soorce]
  1. Shinichi Oishi, 「例にもとずく情報理論入門」 (Example-basit introduction tae information theory) Kodansha, June 1993, ISBN4-06-153803-9.
  2. Shinichi Oishi, 回路理論 (Circuit theory) Korona Publishing, May 2013.
  3. a b www.oishi.info.waseda.ac.jp/~oishi/index.html
  4. Hoffman, N., Ichihara, K., Kashiwagi, M., Masai, H., Oishi, S., & Takayasu, A. (2016). Verified computations for hyperbolic 3-manifolds. Experimental Mathematics, 25(1), 66-78.
  5. He also supported the development of INTLAB (made by MATLAB and GNU Octave).
  6. Oishi, S., & Rump, S. M. (2002). Fast verification of solutions of matrix equations. Numerische Mathematik, 90(4), 755-773.
  7. Morikura, Y., Ozaki, K., & Oishi, S. (2013). Verification methods for linear systems using ufp estimation with rounding-to-nearest. Nonlinear Theory and Its Applications, IEICE, 4(1), 12-22.
  8. Ozaki, K., Ogita, T., Oishi, S., & Rump, S. M. (2012). Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59(1), 95-118.
  9. Yamanaka, N., Okayama, T., Oishi, S., & Ogita, T. (2010). A fast verified automatic integration algorithm using double exponential formula. Nonlinear Theory and Its Applications, IEICE, 1(1), 119-132.
  10. Yamanaka N., Okayama T., Oishi S. (2016) Verified Error Bounds for the Real Gamma Function Using Double Exponential Formula over Semi-infinite Interval. In: Kotsireas I., Rump S., Yap C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science, vol 9582. Springer, Cham.
  11. Liu, X., & Oishi, S. (2013). Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM Journal on Numerical Analysis, 51(3), 1634-1654.
  12. www.ieice.org/global/
  13. www.ieice.org/eng_r/index.html
  14. Namit after Marie Curie
  15. iciam2023.jsiam.org